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Abstract: A new method for investigating the mechanisms of nitric oxide release from NO donors under
oxidative and reductive conditions is presented. Based on the fragmentation of N-nitrosoamines, it allows
generation and spectroscopic characterization of nitrenium cations, amide anions, and aminyl radicals.
X-irradiation of N-nitroso-N,N-diphenylamine 1 in Ar matrices at 10 K is found to yield the corresponding
radical ions, which apparently undergo spontaneous loss of NO• under the conditions of this experiment
(1•+ seems to survive partially intact, but not 1•-). One-electron reduction or oxidation of 1 is observed
upon doping of the Ar matrix with DABCO, an efficient hole scavenger, or CH2Cl2, an electron scavenger,
respectively. The resulting diphenylnitrenium cation, 2+, and the diphenylamide anion, 2-, were characterized
by their full UV-vis and mid-IR spectra. The best spectra of 2+ and 2- were obtained if 1 was homolytically
photodissociated to diphenylaminyl radical 2• and NO• prior to ionization. 2+ and 2- are bleached on
irradiation at <340 nm to form 2• or, in part, 1. DFT and CCSD quantum chemical calculations predict that
the dissociation of 1•+ and 1•- is slightly endothermic, a tendency which is partially reversed if one allows
for complexation of the resulting 2+ (and, presumably, 2-) with NO•. The method described in this work
should prove generally applicable to the generation and study of nitrenium cations and amide anions R2N+/-

under matrix and ambient conditions (i.e., in solution).

1. Introduction

Nitric oxide, due to its important physiological functions as
a mediator in vascular muscle relaxation and a messenger in
cellular signaling, has received enormous attention after the
initial reports of its biological activity. Interest has also focused
on nitric oxide synthase inhibitors and NO donors as potential
therapeutic products.1,2 Among the latter,S-nitrosothiols are
considered to be ubiquitous biological NO donors, but, in spite
of their importance as sources of NO, the mechanism of their
decomposition has remained largely unexplained. Under physi-
ological conditions,S-nitrosothiols are found to undergo ho-
molytic fragmentation to yield NO•, but also heterolytic
fragmentation to yield NO+ and NO-. Reductive and oxidative
decomposition has been proposed as more rapid and effective
than S-NO bond homolysis.3-8

On the other hand,N-nitrosoamines, another class of potent
NO donors showing vasorelaxant activity,9,10 are generally
considered as carcinogens.2 For N-nitroso-N,N-diphenylamine,
the genotoxicity and carcenogenicity studies remain, however,
largely inconclusive, and the mechanism of the appearance of
mutagenicity is unknown11,12 (a cytochrome P-450-dependent,
reductive denitrosation mechanism for the induction of DNA
single strand breaks has been suggested13). In this paper, we
report experimental and theoretical studies on the homolytic or
heterolytic fragmentation ofN-nitroso-N,N-diphenylamine under
oxidative and reductive conditions. The mechanistic details of
the investigated reactions may be directly related to the role of
N-nitrosoamines as NO donors in biological processes. More-
over, the mechanistic aspects related to the homolytic or
heterolytic cleavage of the N-NO bond are similar to those of
the S-NO bond.2,14
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As a wide range of alkyl- or aryl-substitutedN-nitrosoamines
are stable and commercially available, we developed a strategy,
reported in this paper, which allows in principle to study the
mechanistic aspects of the NO-releasing process under condi-
tions where the transient products which occur in the investi-
gated reactions persist sufficiently long to be probed and
characterized by conventional spectroscopic means. One type
of such transient species expected on oxidative fragmentation
of nitrosoamines are nitrenium cations (reactive intermediates
that contain a divalent, positively charged nitrogen atom; see
Scheme 1).15,16Apart from their being hypovalent species with
a peculiar electronic structure,15 the biological role of aryl
nitrenium cations in carcinogenesis provides a strong incentive
for studying their structure and reactivity.

In kinetic studies, nitrenium cations are usually generated by
photolysis of ionic precursors (anthralinium cations,17 N-
aminopyridinium cations18), by photoinduced N-X heterolysis
(X ) Cl, OSO3, OAc),19 or by protonation of photogenerated
nitrenes.20 These techniques have allowed mainly the groups
of Falvey21,22and McClelland23,24and some others to character-
ize many arylnitrenium cations by transient UV/vis (and recently
also by transient IR25 and Raman26) spectroscopy and to
determine the kinetics of their reactions with various electron-
rich arenes27 and with guanine bases.24,28However, most of the
above schemes suffer from one or the other limitation with
regard to the types of nitrenium cations that can be generated,
and they invariably involve the presence of counterions which
increase the polarity of the surrounding medium and may perturb
thus some inherent properties of the nitrenium cations. Finally,
these species appear only as transient intermediates in the above
studies, which precludes their full spectroscopic characterization.

We choseN-nitroso-N,N-diphenylamine as a first target
because, in contrast to the sparse spectral features of small
species like NO• and its ions, arylaminyl radicals and nitrenium/
amide ions can be unambiguously characterized and used as
markers of the possible pathways of nitrosamine fragmentation.
Second, the transient UV/vis and a part of the transient IR
spectrum of the diphenylnitrenium cation are known from
previous solution studies.29,30 Before looking into the fate of
the nitrosoamine on ionization (which was expected to produce
the diphenylaminyl radical as a secondary product), we studied
its photolysis as a neutral species.

2. Methods

N-Nitroso-N,N-diphenylamine1 (Aldrich, >97% pure) was purified
by sublimation and subsequent recrystallization from ethanol to yield
bright yellow crystals which were placed in a U-tube attached to the
inlet system of the cryostat and carefully degassed. After that, a stream
of a 10:1 Ar/N2 mixture, doped with about 1% of an electron or hole
scavenger (see below), was led through the U-tube at room temperature.
Thereby, deposition of a suitable amount of the nitrosamine1 on the
CsI window, held at 20 K, occurred. Ionization was effected by
X-irradiation of the resulting matrix,31 which leads predominantly to
the ionization of Ar. The resulting holes and electrons propagate through
the matrix until the holes meet a species with a lower oxidation potential
than Ar, and the electrons one with a higher electron affinity, whereupon
both charges get trapped.

If radical cations are targeted, the matrix is doped with CH2Cl2, which
acts as an efficient electron scavenger,31 at least until a certain
concentration of radical cations has built up. After about 10-15% of
the neutral precursor has been converted to radical cations, those begin
to compete effectively with CH2Cl2 for liberated electrons, and the
amount of charged species in the matrix begins to level off. Under our
experimental conditions, this asymptotic limit is usually reached after
about 1.5 h of X-irradiation.

If radical anions are to be formed, the matrix is doped with 1,4-
diazabicyclo[2.2.2]octane (DABCO), an excellent hole scavenger which
has the advantage that its radical cation has an unobtrusive UV/vis
spectrum (a weak, broad band peaking at 450 nm) and a very simple
IR spectrum consisting essentially of a single, intense peak at 713.5
cm-1 (see Supporting Information).

Electronic absorption (Perkin-Elmer Lambda 900) and infrared
spectra (Bomem DA3) were measured before and after ionization or
subsequent photolyses and are presented as difference spectra. Pho-
tolyses were effected with a high-pressure Hg/Xe arc through appropri-
ate interference and/or cutoff filters, or with a low-pressure Hg lamp
(254 nm).

The geometries of all species were optimized by the B3LYP density
functional method32,33using the 6-31G* basis set. All stationary points
were characterized by calculating second derivatives of the energy.
These served also to model IR spectra and the statistical thermodynamic
corrections needed to calculate relative enthalpies or free energies.
Excited-state calculations were carried out on the basis of time-
dependent response theory, also with the B3LYP density functional
method (the so-called TD-DFT method)34 as implemented in the
Gaussian suite of programs35 which was used in all the calculations.36
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Scheme 1. Strategies To Obtain Nitrenium Cations from
N-Nitrosoamines
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3. Results and Discussion

3.1. Homolytic Fragmentation ofN-Nitroso-N,N-diphen-
ylamine 1. The homolytic bond dissociation energies (BDEs)
for various substitutedN-nitroso arylamines are in the range of
20-30 kcal/mol, lower than those ofN-carbonyl nitroso
compounds14 but similar to the values for the S-NO bonds in
aromatic and alkyl nitrosothiols.7,14,37Although N-NO bonds
are over 60 kcal/mol weaker than the corresponding N-H
bonds, their homolytic cleavage still requires substantial activa-

tion which can be delivered, for example, through photoexci-
tation of N-nitrosoamines.

Although it barely absorbs at this wavelength, nitrosamine1
already undergoes slow photodecomposition at 400 nm (blue
difference spectrum b in Figure 1), but1 is photolyzed more
efficiently by irradiation at 254 nm (green difference spectrum
c) to form the diphenylaminyl radical,2•.38 This compound
reveals itself by its broad band peaking at 770 nm, which is
accompanied by a weaker feature at 400-500 nm.39-41 In
addition to these previously recorded bands, we recorded an
intense, structured peak at 310 nm.

TD-B3LYP predictions for the spectrum of2• (black bars at
the bottom of Figure 1 and Table 1 in the Supporting
Information) are in excellent accord with the observed spec-
trum. According to these calculations, the broad visible band is
mainly due to electron excitation for the nN(σ) molecular orbital
(MO) to the pN(π) singly occupied molecular orbital (SOMO),
while the smaller band peaking at 440 nm involves promotion
from the lower-lying nN(π) MO to the SOMO (see MOs in
Figure 2). The UV band consists essentially of two excitations
which involve positive and negative combinations of the elec-
tron promotions from the SOMO to the twoπ* MOs in Figure
2.

On irradiation at>850 nm (or, more efficiently, at>515 nm),
the spectrum of2• is partially bleached (red spectra d and f in
Figure 1). The IR spectra shown in Figure 3 reveal that the
cleavage of1 is actually photoreversible in Ar, in that the bands
of 1 (black spectrum a) which are bleached on 400 or 254 nm
photolysis (blue spectrum b) clearly reappear on>515 nm
irradiation (red spectrum c), whereas the 1836 cm-1 peak of
the NO radical shows the inverse behavior. Apparently,2• and
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Figure 1. Difference spectra for the photodissociation of1 to give2• and
NO• in an Ar matrix at 10 K (spectra a-d are from an experiment with a
low concentration and spectra e and f from one with a higher concentration
of 1).

Figure 2. MOs of2 involved in the electronic transitions of2•, 2+, and2-

(electronic ground configuration for2• is shown). Note that some occupied
π MOs lie between the two nN MOs.

Figure 3. Changes in the IR spectra upon photodissociation of1 (b) and
its re-formation by NIR irradiation (c) in an Ar matrix. (a) Absolute spectrum
of 1. Top: IR spectrum of2• calculated by B3LYP/6-31G*.
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NO•, which survive next to each other in the thermalized matrix,
re-combine on excitation of2•, perhaps as a consequence of a
local annealing of the matrix.

In general, ca. 50% of1 can be photodecomposed by
irradiating for 1-2 h at 254 nm (up to 75% on prolonged
irradiation). Only about half of the formed2• is, however,
reconverted to1 upon NIR bleaching, because apparently some
of the NO radicals have escaped the matrix cavity and cannot
be recaptured by2•. We believe that the latter process, which
is probably activationless in solution, involves local annealing
of the matrix by excited2• trying to dissipate its excess energy.

In the above experiments,2• revealed also its complete IR
spectrum, which has not been reported to date. This spectrum
turns out to be in very good accord with the B3LYP/6-31G*
prediction (green trace d in Figure 2). Due to extensive mode
mixing, none of the IR transitions can, however, be associated
unambiguously with individual valence deformations, such as
the symmetric and antisymmetric C-N stretching mode.

3.2. Radiolysis of the Diphenylaminyl Radical 2•. The
above-described experiments did not yield any evidence for
heterolysis of1 on 254 nm photolysis in Ar matrices. As a good
yield of 2• can be obtained by photolysis of1, we decided to
subject the resulting samples directly to ionization by radiolysis,
to obtain the diphenylnitrenium cation,2+. On exposing a
CH2Cl2-doped Ar matrix containing ca. 50% of1 and2• to 90
min of X-irradiation two times, the UV-vis spectral changes
documented in Figure 4 were observed.

While the bands of2• decrease, new bands arise which peak
at 665 (broad), ca. 500 (shoulder), 415, and 386 nm (both sharp
and intense). However, the difference spectrum obtained on the
second 90 min irradiation indicates that not all these bands
belong to the same species. In particular, the 386 nm peak grows
much less in this second radiolysis than the others. This hunch

is confirmed by comparing the present spectra to that of2+,
measured previously by Moran and Falvey,29 which corresponds
to the green trace in Figure 4. Indeed, the bands at 665 and 415
nm in that spectrum coincide with the present ones, whereas
that at 386 nm is absent from the spectrum of Moran and Falvey.
The pattern of bands assigned to2+ correlate also reasonably
well with that from TD-DFT predictions for this species,
although quantitative agreement is not as good as for2•.

In terms of the MOs in Figure 2, the two bands in the
spectrum of2+ are caused by positive and negative combinations
of electron promotions from nN(σ) and nN(π) to the (now empty)
pN/π MO (cf. Table 2 in the Supporting Information).

In view of our recent discovery that species with a sufficiently
high electron affinity may compete successfully with CH2Cl2
for the electrons liberated in the X-irradiation of Ar,42 we
decided to examine whether2• had perhaps also undergone
reduction in this process. If indeed the amide anion2- was
formed, its yield would be expected to increase if DABCO is
added as a hole scavenger. The UV/vis spectra resulting from
this experiment are shown in Figure 5.

From these spectra we determine that2• is again consumed
in the process of X-irradiation (its typical broad 770 nm band
decreases in the purple difference spectrum), while a new band
peaking at 386 nm arises next to a shoulder at 415 nm, which
is probably due to some2+ that is formed even under these
conditions (there is also an indication of the broad 665 nm band
of this compound in the difference spectrum), and a bump
around 500 nm.

Upon photolysis at 313 nm, the spectrum that was formed
on X-irradiation is bleached (blue difference spectrum), whereby
the absorptions of2• are re-formed (blue arrows). The mech-

(42) Czerwinska, M.; Sikora, A.; Szajerski, P.; Zielonka, J.; Adamus, J.;
Marcinek, A.; Piech, K.; Bednarek, P.; Bally, T.J. Org. Chem.2006, 71,
5312.

Figure 4. Spectral changes on X-irradiation of a CH2Cl2-doped Ar matrix
containing aminyl radical2• (blue spectrum) for 90 min (red spectrum)
and then another 90 min (orange spectrum). The green trace is a copy of
the spectrum of2+ obtained by Moran and Falvey by flash photolysis of
theN-diphenylaminopyridinium tetrafluoroborate in CH3CN/CF3COOH.29

Bottom: TD-B3LYP predictions of the electronic transitions of2+ (for
details, see Supporting Information).

Figure 5. Spectral changes upon X-irradiation of a DABCO-doped Ar
matrix containing aminyl radical2• for 90 min (purple spectrum) and after
subsequent bleaching at 313 nm (blue spectrum). The bands of2• are marked
with blue arrows, those of the amide anion2- with purple arrows. Red
dotted line, red spectrum from Figure 4. Bottom: TD-B3LYP prediction
of the electronic transitions of2- (for details, see Supporting Information).

A R T I C L E S Piech et al.

3214 J. AM. CHEM. SOC. 9 VOL. 129, NO. 11, 2007



anism of this process probably involves electron photodetach-
ment (and therefore neutralization) from the anion and ensuing
reneutralization of the cations present in the matrix (mainly
DABCO•+ and some2+).

The UV band of2- has previously been observed after
dissociative electron attachment toN,N-diphenyl- and tetraphen-
ylhydrazine (λmax ) 380 nm)39 and after deprotonation of
diphenylamine (λmax ) 373 nm).43 Our present observations are
in good accord with these reports. TD-DFT calculations predict
one intense and two small UV transitions for the amide anion
2-, all of which are probably hidden in the intense 386 nm band.
The transitions are positive and negative combinations of the
electron promotions from the pN/π highest occupied molecular
orbital (HOMO; doubly occupied in2-) to the twoπ* MOs
shown in Figure 2.

In Figure 6, the IR spectra for the above-described processes
are juxtaposed. By comparing the green and purple spectra, it
is clearly seen that two compounds are formed, in different
proportions, on X-irradiation of matrices doped with the electron
scavenger, CH2Cl2, or the hole scavenger, DABCO, and that in
the latter case both species are bleached upon photolysis at 313
nm (in addition to the radical cation of DABCO).

The IR spectrum of2+ between 1200 and 1700 cm-1 has
been measured previously by time-resolved spectroscopy in the
laboratories of Toscano et al.,30 and the three strong peaks at
1392, 1442, and 1568 cm-1 that had been assigned to2+ are
found with the same intensity ratio in our present experiments
(at 1397, 1450, and 1575 cm-1). With the aid of the calculated
spectra of2+ and2-, it is easy to assign these and most of the
other peaks in the IR spectra (cf. dashed lines) to these two
species.

In sum, we have been able to convert the aminyl radical2•,
pre-formed by photolysis of1 in an Ar matrix, into the nitrenium
cation 2+ and the amide anion2- by X-irradiaton of that Ar
matrix. Their distinctive spectral features in the UV/vis and IR
leaves no doubt that photochemical decomposition ofN-nitroso-
N,N-diphenylamine in Ar occurs exclusively by homolysis.

3.3. Ionization of N-Nitroso-N,N-diphenylamine 1.As the
homolytic fragmentation ofN-nitrosoamines, similar to the

decomposition ofS-nitrosothiols, is an endothermic process, we
explored other possibilities of N-NO bond cleavage. As redox
reactions are known to have a strong influence on the strength
of bonds that are cleaved in chemical and biological reactions,
we investigated the homolytic vs heterolytic fragmentation also
under reductive and oxidative conditions.

On exposing an Ar matrix containing roughly equimolar
amounts of1 and DABCO to 90 min of X-irradiation, the green
spectrum in Figure 7 is obtained. It clearly shows the formation
of 2- (purple arrow) and2• (blue arrows). Apart from the
omnipresent 500 nm shoulder (which we have not been able to
assign so far), there is no indication for the formation of any
other species, also in the IR spectra (not shown). Thus, the
fragmentation of1•- is apparently spontaneous under the present
conditions. On NIR irradiation, the bands of2• are bleached,
while the intense UV band of2- is not affected, whereas 313
nm photolysis leads to the disappearance of the latter and the
formation of2•.

If the matrix is doped with CH2Cl2 instead, the much more
complex red spectrum shown in Figure 7 arises. In that
spectrum, we can again discern the formation of2-, 2•, and
much more2+ than in the experiment with DABCO. However,
in contrast to that experiment, the difference spectrum clearly
indicates the presence of at least one additional species, the
bands of which are indicated by red arrows in Figure 7. Upon
irradiation at >850 nm (blue spectrum), these bands are
bleached, along with those of2•, which is also photosensitive
at this wavelength. Concomitantly, the bands of2+ rise in
intensity (see green arrows).

The IR spectra for these experiments confirmed the formation
of 2-, 2•, and2+ (and their bleaching, where this is possible),
but they failed to reveal any useful information about the identity
of the additional new compound observed in the experiment
with CH2Cl2. Thus, we are left to speculate that it is probably
the radical cation of1. A TD-B3LYP calculation of the optical
spectrum of1•+ gave the result shown graphically at the bottom

(43) Shashin, S. S.; Emanuel, O. N.; Skibida, I. P.Russ. Chem. Bull.1994, 43,
1646.

Figure 6. IR difference spectra for the X-radiolysis of an Ar matrix
containing1 and 2• + NO• in a ca. 1:1 ratio in the presence of CH2Cl2
(green spectrum, a) or DABCO (purple spectrum, b). The orange spectrum,
c, corresponds to the 313 nm bleaching of the sample giving spectrum b
(the peaks labeled D are due to DABCO, those marked with red asterisks
are due to2•). Top: IR spectra of2+ (green) and2- (purple) calculated by
B3LYP/6-311G(2d,p).

Figure 7. Spectral changes on X-irradiation of an Ar matrix containing1
when it is doped with DABCO (green spectrum) or CH2Cl2 (red spectrum).
The blue spectrum shows the spectral changes on bleaching the sample
giving the red spectrum at>850 nm. The arrows indicate the positions of
the bands of2• (blue), 2+ (green), and2- (purple). Bottom: TD-B3LYP
prediction of the electronic spectrum of the radical cation of1 (for details,
see Supporting Information).
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of Figure 7, which indicates that1• + has many electronic tran-
sitions in the range where we can observe spectra. Although this
prediction cannot be taken as conclusive evidence for the pres-
ence of1•+, it is not in contradiction with a corresponding assign-
ment of the newly observed bands (red arrows in Figure 7).

Thus, it seems that1•+ s in contrast to1•-, for which we
have no evidence whatsoevers survives at least partially after
being formed by charge transfer from Ar•+, a process that leaves
the incipient cation with substantial excess energy.31 On NIR
photolysis,1•+ is cleaved to yield2+ + NO•. Both 2+ and2-

are neutralized in part to2• by the electrons and holes that are
continually generated during the X-irradiation of Ar. Of course,
once2• is formed, the holes and electrons will attach to it to
re-form2+ and2-, in a proportion that depends on the presence
of the electron or hole scavenger.

The processes observed on X-irradiation of Ar matrices
containing 1 are summarized in Scheme 2. An interesting
corollary of these experiments is that there is no indication for
the ionization of1 in the presence of2•. Apparently, the lower
ionization potential of the latter species causes it to preferentially
scavenge the holes that are formed on X-irradiation of Ar.

To gain insight into the thermochemistry and the mechanisms
of the above processes, we carried out some quantum chemical
calculations that are described in the following section.

3.4. Quantum Chemical Calculations.Figure 8 shows how
the frontier MOs and the bond lengths change as1 is ionized
and as the resulting radical ions lose NO• to form 2+ and2-,
respectively. While removal of an electron is from the HOMO
of 1, which is slightly bonding along the N-N bond, addition
of an electron is to the LUMO of1, which is N-N antibonding.
Thus, it comes as no surprise that the N-N bond lengthens
considerably in the course of both processes, to the point where
1•- must be regarded as a complex between2- and NO•.
Concomitantly, the N-O bond length shrinks, almost to the
value of 1.15 Å it has in the free NO radical.

Upon full dissociation, which, according to B3LPY/6-31G*
calculations, is endothermic by ca. 8 kcal/mol in both radical
ions (cf. Table 1), the bond length pattern in the resulting species
is indicative of the iminocyclohexadienyl structure that has been
noted previously for2+,30,44and which expresses itself particular
in the very short C-N bonds. The geometries of2+ and2- are
very similar (and to that of2•, not shown), which is to be

expected because the bond lengths should not depend on the
occupation number of the essentially nonbonding MO that is
depicted on the right in Figure 8 (0 in2+, 1 in 2•, or 2 in 2-).

It is also interesting to follow the evolution of the frontier
MOs along the reaction path: Whereas the HOMO and the
LUMO of 1 are still quite distinct, the ensuing SOMOs of the
two radical ions begin to resemble each other (apart from the
presence or absence of nodes along the N-N bond or the C-C
bonds, respectively). On loss of NO•, the two MOs become
nearly identical, so the wavefunctions change in a smooth way
on lengthening the N-N bond in both species. Consequently,
the re-combination of2+ and2- with NO• is (computationally)
barrierless, and the question arises why the two ions persist in
the presence of NO• in Ar.

One reason could be that the B3LYP/6-31G* predictions for
the thermochemistry of the dissociation of1•+ and 1•- are
wrong. Thus, we attempted to corroborate these predictions
using a correlated wavefunction-based method, but this turned
out to be difficult, because zero-order UHF wavefunctions for
1•+ and 2• are so badly spin contaminated (〈S2〉 > 2 in both
cases) that it is impossible to rectify this by second-order
perturbation theory, and therefore MP2 results become es-
sentially meaningless. Thus, we resorted to coupled cluster
calculations (where the perturbation series is basically taken to
infinite order) based on a spin-restricted wavefunction (RCCSD),
which gave the results listed in the third column of Table 1.
Unfortunately, it proved impossible, with our current hardware,
to estimate the contribution of triple excitations, i.e., do RCCSD-
(T) calculations for the radical ions of1, and we are aware of

(44) Cramer, C. J.; Dulles, F. J.; Falvey, D. E.J. Am. Chem. Soc.1994, 116,
9787.

Figure 8. Change in bond lengths and frontier MOs on ionization of1 and subsequent loss of NO• from the resulting radical ions,1•+ and1•- (SOMO )
singly occupied MO), to yield the closed-shell ions,2+ and2-, respectively, as calculated by the B3LYP/6-31G* method (see Supporting Information for
full geometries).

Table 1. Relative Energies [∆H(0 K), in kcal/mol] of Different
Species Discussed in This Work

B3LYP/6-31G* RCCSD/6-31G*

N-nitroso-N,N-diphenylamine1 (0) (0)
2• + NO• 23.5 26.3

radical cation1•+ (0)a (0)b

2+ + NO• (free) 8.04c 6.21d

2+‚‚‚NO• (complex) 5.47

radical anion1•- (0)e (0)f

2- + NO• (free) 7.99g 4.52h

a Ionization energy of1, 7.47 eV.b Ionization energy of1, 7.55 eV.
c Ionization energy of2•, 6.80 eV.d Ionization energy of2•, 6.68 eV.e Gas-
phase electron affinity of1, -0.81 eV.f Gas-phase electron affinity of1,
-0.12 eV.g Gas-phase electron affinity of2•, -1.48 eV.h Gas-phase
electron affinity of2•, -1.06 eV. More negative electron affinities denote
more strongly bound electrons.
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the fact that the 6-31G* basis set is not sufficiently flexible for
coupled cluster calculations. However, the fact that the RCCSD
predictions are in line with those from the DFT calculations
(which are much less affected by problems of spin contamina-
tion, 〈S2〉 < 0.78) lends support to the notion that the dissocia-
tions of the radical ions of1 are slightly endothermic.

In 1•+, we explored also the possibility of re-complexing the
cation,2+, with NO•. Of course, if the N end of NO• is brought
into proximity of the nitrenium N atom, the two species collapse
to re-form1•+. However, we found that the NO• also liked to
enter into a loose complex with one of the benzene rings of2+,
and the most stable of these complexes turned out to be bound
by ca. 2.5 kcal/mol relative to2+ + free NO• and stable with
regard to spontaneous collapse to1•+.

The fact that the dissociation of the radical ions is slightly
endothermic (although it is exergonic in the gas phase, mainly
due to the gain in translational entropy which, however, cannot
be realized in a matrix) is not a problem because the required
activation can easily be provided by the excess energy that is
imparted onto the incipient radical ions (or upon subsequent
photoexcitation of1•+). Due to local annealing of the matrix
by this excess energy, some of the NO radicals will escape the
matrix cavity containing2+ or 2- and thus will not be able to
re-combine with these ions. Others may remain trapped within
the same cavity but in the form of a complex that will not
spontaneously collapse to the nitroso radical ion.

Finally, we would like to address a question that was raised
by a reviewer of this manuscript: Why do the radical ions of1
not fragment to yield2• and NO+ or NO-, respectively? The
reason is simply that the (gas-phase) ionization energy of NO•

(9.26 eV) is ca. 2.5 eV higher than that of2• (cf. Table 1), so
transferring an electron from NO• to 2+ is strongly endothermic,
even in Ar, where this endothermicity may be attenuated by dif-
ferential solvation effects. As the geometry of2 does not depend

much on the presence or absence of an additional electron in
its nonbonding HOMO (cf. Figure 8), we do not expect that
the electron transfer between NO• and 2+ is associated with
any barrier. Hence, NO+ and2• are very unlikely to coexist for
any length of time in the same matrix cavity. Similar arguments
exclude the formation of NO- + 2• from 1•-: the electron
affinity of NO• is close to zero, whereas that of2• is calculated
to be over 1 eV. Even if the calculation is wrong by 0.5 eV
(which it may be, because electron affinities are difficult to
calculate accurately), electron transfer from2- to NO• will also
be strongly endothermic. Thus, it comes as no surprise that we
found no evidence for NO+ or NO- in the IR spectra.

4. Conclusions

N-Nitroso-N,N-diphenylamine1 was exposed to X-irradiation
in Ar matrices doped with CH2Cl2 (an electron scavenger) or
DABCO (a hole scavenger). Thereby, it was found that the
radical cations and anions which result from these experiments
mostly undergo spontaneous cleavage of the N-N bond to yield
the diphenylnitrenium cation,2+, or the diphenylamide anion,
2-, respectively, plus NO•. In the experiments with CH2Cl2,
some evidence was found for a persistent radical cation,1•+,
which could subsequently be photodecomposed to2+ and
NO•.

The most interesting results were obtained when1 was first
photodissociated to yield the diphenylaminyl radical,2•, which
was subsequently subjected to ionization according to the above
protocol.2+, 2•, and2- were characterized by full UV-vis and
IR spectra, which were unambiguously assigned on the basis
of DFT calculations.

The results presented in this paper show that attachment or
detachment of an electron to or from nitrosoamines significantly
lowers the activation barrier for cleavage of the N-NO bond
and release of the NO• radical.

The present method seems to be generally applicable for the
generation of nitrenium cations R-N+-R and amide anions
R-N--R under the conditions of matrix isolation and in the
absence of counterions, which allows their study by conventional
spectroscopic methods. We plan to exploit this route to
investigate derivatives that have not previously been studied,
including S-nitrosothiols.
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Scheme 2. Processes Observed on X-Irradiation of Ar Matrices
Containing 1
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